2-48-3. Alfred Potier to H. Poincaré

Dimanche 22 mars 1891

Cher Monsieur,

Des examens de l’École des Mines m’ont occupé hier, et avant hier, je n’ai pas eu le loisir de vous répondre plus tôt.11Potier soutenait le point de vue selon lequel, sous l’incidence normale, il y a continuité entre la vibration incidente, réfléchie et réfractée, la dernière étant la somme des deux premières (Potier 1891). Dans sa note du 02.03.1891, Poincaré démontre que, sous l’hypothèse de Neumann, la fonction qui représente le déplacement local de l’éther est discontinue lors du passage de la lumière de l’air au métal (Poincaré 1891b). Il met surtout en question l’interprétation de l’expérience de Wiener (1890), à savoir que le déplacement local de l’éther serait perpendiculaire au plan de polarisation; Poincaré avait exprimé ses doutes à ce propos dans une note du 09.02.1891 (Poincaré 1891a), en réponse à une note d’Alfred Cornu (1891). Dans ce but, il étudie les équations du mouvement de l’éther lors de la réflexion métallique. Il écrit l’équation du mouvement d’après Fresnel sous la forme ad2ξdt2+bdξdt=d2ξdz2. Cette équation correspond aux hypothèses suivantes : la vibration est perpendiculaire au plan de polarisation, l’élasticité de l’éther est constante d’un milieu à l’autre, l’absorption de la lumière par le métal est due à une résistance proportionnelle à la vitesse des ‘‘molécules’’ d’éther (terme bdξdt ). Il écrit l’équation du mouvement selon Franz Neumann (1835), sous la forme d2ξdt2=ddz(αdξdz+βd2ξdzdt). Dans ce cas la vibration est parallèle au plan de polarisation, la densité de l’éther est constante d’un milieu à l’autre et l’absorption serait due à une résistance qui dépendrait de la vitesse relative des molécules d’éther les unes par rapport aux autres. Cela revient alors à concevoir autant d’éthers différents par leur élasticité et leur viscosité qu’il y a de corps différents. Poincaré estime qu’il n’existe pas d’argument décisif entre les modèles de Fresnel et de Neumann. Quant à Potier, il tente de montrer les difficultés qui apparaissent dans l’hypothèse de Neumann. Dans ces équations n est l’indice de réfraction, g le coefficient d’absorption, p=2πνν est la fréquence de la lumière.

Les formules des réflexions métalliques donnent en posant

n+gi=Θeεi, et U2e2ui=Θ2e2ε-sin2i,

pour le rapport des vibrations polarisées dans les deux azimuths principaux22Dans le cas des métaux où la lumière est fortement absorbée, l’indice est mis sous la forme d’un nombre complexe dont la partie réelle n représente la réfraction et la partie imaginaire g l’absorption (voir la première lettre de Potier). Une surface métallique réfléchit une lumière de polarisation rectiligne en une lumière de polarisation dite elliptique composée d’une vibration située dans le plan d’incidence et une vibration perpendiculaire à ce plan. C’est du rapport entre ces deux vibrations dont il est question ici; les paramètres u et U ont été introduits par Cauchy et explicités par Potier (1872a, 1872b), ainsi que par Maxwell (1873). Ces deux vibrations varient suivant l’angle d’incidence. Un déphasage de π/2 correspond à une incidence I dite principale. Dans ces formules, il y a une confusion possible entre i=-1 et i en tant qu’angle d’incidence.

cosiUeui-sin2icosiUeui+sin2i.

Sous l’incidence principale I, U=sinItgI, le rapport purement imaginaire se réduit à itgu2. Jamin, Quincke et autres ont mesuré le rapport des amplitudes (tgβ de Jamin) ainsi que I, on en déduit33Jules Jamin (1818–1886) est professeur de physique à la Sorbonne. Georg Quincke (1834–1924) est professeur de physique à Heidelberg.

(n+gi)2=sin2I(1+tg2Ie4βi)
n2-g2=sin2I(1+tg2Icos4β)

Pour l’argent I varie de 75° (rouge) à 66° (violet) tgI de 3,7 à 2,3 et β varie de 41 à 40°. Le cos4β est donc -0,95, tg2Icos4β est négatif et plus grand que 1.

Même résultat pour le métal des miroirs tgI varie de 4 à 3, β oscille autour de 28°, soit cosβ=-0,38.

Pour le zinc et l’acier β est voisin de 20° et cos4β positif d’où n2>g2.

La valeur de n (argent) est environ de 1/4, ce qui se rapproche singulièrement du résultat trouvé par Kundt, par la méthode du prisme.[*]44August Kundt (1839–1894) dirige le Physikalische-Technische Reichsanstalt. Il s’agit d’une méthode pour mesurer le déphasage entre les deux composantes de vibration de la lumière elliptique. Elle consiste à faire interférer les deux parties d’un même faisceau dont l’un a subi un réflexion vitreuse sur la base d’un prisme et l’autre une réflexion métallique sur cette même base; voir Potier (1872a).

Je pensais donc me rapprocher de la réalité en considérant dans un milieu fortement réfléchissant la longueur d’onde comme grande et appuyer votre hypothèse Neumann, en montrant que la grande viscosité b pourrait même dans ce cas n’entraîner qu’une faible consommation d’énergie ; cette consommation me parait donnée par la valeur moyenne de

b3ξz2tξτ,

soit à période égale par celle de b2ξz2ξ, intégrée depuis z=0, surface du métal, jusqu’à l’infini ; c’est à dire b2g(n2-g2) ou na. L’hypothèse du petit indice, ou de la longueur d’onde très grande, me paraissait favorable à la thèse (que je combats) et plus conforme à la réalité. Elle donne du reste à l’amplitude réfléchie

(1-n)2+g2(1+n)2+g2

une valeur très voisine de l’unité.

Quant à la présence d’un coefficient négatif, je pense qu’on peut l’attribuer à l’action de la matière pondérable; si on suppose le mouvement Ξ de celle-ci déterminé par une équation55Poincaré voit ‘‘une très grande difficulté’’ dans le fait que n2<g2 car cela entraînerait une valeur négative pour le pouvoir inducteur spécifique K du métal (Poincaré 1892, 90).

α2ξt2+βξt-=(Ξ-ξ)+aΞt+b2Ξt2+ (1)

Soit en appelant comme vous ip l’exposant dépendant du temps

Ξ=ξf(p)

on a pour déterminer les ξ des équations de66En théorie de l’élasticité, Θ=ξx+ηy+ζz.

Δ2ξ-Θx=ξf(p) (2)

et il est assez facile de faire des hypothèses vraisemblables sur l’origine des α, β, … a, b, donnant pour les coefficients de ξ une valeur imaginaire, avec partie réelle positive, ou négative à volonté : si de plus on suppose que non seulement Ξ, mais les 2 autres composantes entrent dans l’équation (1), les équations (2) deviennent

Δ2ξ-Θx=ξf(p)+ηf1(p)+ζf2(p) (3)

et l’on voit aisément que les seconds membres doivent être les dérivées d’une fonction quadratique des ξ, η, ζ, de sorte que cette forme générale (3) explique la double réfraction, la dispersion, anormale ou non, avec terme de Briot pour les corps transparents, la réfraction et la réflexion, cristalline ou non, en conduisant aux formules de Fresnel, et sa direction de vibration. C’est aussi simple, aussi condensé que possible, et je ne vois rien qui puisse se comparer à cela : c’est pourquoi je continue à penser que ces équations représentent réellement les phénomènes lumineux ; que les ξ, η, ζ soient réellement des déplacements des particules d’un éther je l’ignore ; mais on doit le supposer si on veut expliquer mécaniquement ces équations (3) qui me paraissent avoir un caractère expérimental, si on y joint la notion que l’intensité est proportionnelle à ξ2+η2+ζ2.

Je vous remercie de l’indication de Voigt ; je n’ai pas les annales de Göttingen sous la main, et avoue n’y avoir jamais rien lu, ayant eu des reproductions des mémoires de Weber et de Gauss à part.77Ancien élève de Franz Neumann, Woldemar Voigt (1850–1919) est professeur de physique mathématique à Göttingen. Il développe dès 1883 une théorie de la lumière dans laquelle l’éther est assimilé à un solide élastique (Jungnickel et McCormmach 1986, 116–118). Dans les Nachrichten de Göttingen, Voigt publie souvent sur cette théorie; voir, par exemple, Voigt (1884b, 1884a).

Je suppose que vous avez remarqué que les 2 formes88Nous rétablissons dans la première formule le crochet final, absent du manuscrit.

12ε[(ξy+ηx)2+-4[ηyζz+ξxζz+ξxηy]]dτ

et

12ε[(ξy-ηx)2+()2+()2]dτ

de l’énergie potentielle sont équivalentes, quand on fait l’intégration dans un espace limité par une surface où ξ, η, ζ sont nuls, à condition que ε reste le même dans tout l’espace ; qu’il n’y ait pas de surface de séparation ; sinon les 2 expressions diffèrent par des intégrales de surface où entrent les quantités qui vous préoccupent.99En notation moderne, on peut exprimer le potentiel élastique 12ε(×η)2. A condition de mettre la constante d’élasticité ε dans le dénominateur, la formule de Potier est équivalente à celle de James MacCullagh (1848); voir Darrigol (2000, 190) et Whittaker (1951, 142–144). Il y a peut-être là une solution pour la difficulté dont vous m’entretenez ; j’espère à votre retour à Paris, que nous pourrons en causer.

Votre bien dévoué,

A. Potier

[*] J’ajoute que pour les corps avec bande d’absorption intense, l’indice s’abaisse dans le voisinage de la bande (fuchsine).

ALS 4p. Collection particulière, Paris 75017.

Time-stamp: "20.10.2016 02:48"

Références

  • A. Cornu (1891) Sur une expérience récente, déterminant la direction de la vibration dans la lumière polarisée. Comptes rendus hebdomadaires de l’Académie des sciences de Paris 112, pp. 186–189. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • O. Darrigol (2000) Electrodynamics from Ampère to Einstein. Oxford University Press, Oxford. Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • C. Jungnickel and R. McCormmach (1986) Intellectual Mastery of Nature: Theoretical Physics from Ohm to Einstein, Volume 2: The Now Mighty Theoretical Physics, 1870–1925. University of Chicago Press, Chicago. Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • J. MacCullagh (1848) An essay towards a dynamical theory of crystalline reflexion and refraction. Transactions of the Royal Irish Academy 21, pp. 17. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • J. C. Maxwell (1873) A Treatise on Electricity and Magnetism. Oxford University Press, Oxford. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • F. Neumann (1835) Theoretische Untersuchungen der Gesetze, nach welchem das Licht an der Grenze zweier vollkommen durchsichtigen Medien reflectirt und gebrochen wird. Abhandlungen der königlichen Akademie der Wissenschaften in Berlin, pp. 1–160. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • H. Poincaré (1891a) Sur l’expérience de M. Wiener. Comptes rendus hebdomadaires de l’Académie des sciences de Paris 112, pp. 325–329. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • H. Poincaré (1891b) Sur la réflexion métallique. Comptes rendus hebdomadaires de l’Académie des sciences de Paris 112, pp. 456–459. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • H. Poincaré (1892) Théorie mathématique de la lumière II. Georges Carré, Paris. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • A. Potier (1872a) Recherches sur la réflexion vitreuse et métallique. Association française pour l’avancement des sciences 1, pp. 308–320. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré, 2-48-3. Alfred Potier to H. Poincaré.
  • A. Potier (1872b) Sur les changements de phase produits par la réflexion métallique. Comptes rendus hebdomadaires de l’Académie des sciences de Paris 75, pp. 674. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • A. Potier (1891) Observations sur les expériences de M. O. Wiener. Journal de physique théorique et appliquée 10, pp. 101–112. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • W. Voigt (1884a) Theorie der optischen Eigenschaften der Metalle. Nachrichten von der königliche Gesellschaft der Wissenschaften und der Georg-August-Universität zu Göttingen, pp. 137–174. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • W. Voigt (1884b) Theorie der Quincke’schen Beobachtungen über totale Reflexion. Nachrichten von der königliche Gesellschaft der Wissenschaften und der Georg-August-Universität zu Göttingen, pp. 49–67. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • E. T. Whittaker (1951) A History of the Theories of Aether and Electricity, Volume 1: The Classical Theories. T. Nelson, London. Cited by: 2-48-3. Alfred Potier to H. Poincaré.
  • O. Wiener (1890) Stehende Lichtwellen und die Schwingungsrichtung polarisierten Lichtes. Annalen der Physik und Chemie 40, pp. 203–243. External Links: Link Cited by: 2-48-3. Alfred Potier to H. Poincaré.