On the dynamics of the electron:
Introduction, 881, 9

Henri Poincaré

Introduction.

It seems at first that the aberration of light and relatedcaptind electrical phenom-
ena will provide us with a means of determining the absolutgion of the Earth, or
rather its motion with respect to the ether, as opposed toatson with respect to other
celestial bodies. Fresnel pursued this idea, but soon neced that the Earth’s motion
does not alter the laws of refraction and reflection. Anaisgexperiments, like that of
the water-filled telescope, and all those considering teronsigher than first order rela-
tive to the aberration, yielded only negative results; tkanation was soon discovered.
But Michelson, who conceived an experiment sensitive tmsalepending on the square
of the aberration, failed in turn.

It appears that this impossibility to detect the absolutéiomoof the Earth by exper-
iment may be a general law of nature; we are naturally indliteeadmit this law, which
we will call the Postulate of Relativitgnd admit without restriction. Whether or not this
postulate, which up to now agrees with experiment, may laéecorroborated or dis-
proved by experiments of greater precision, it is intengsth any case to ascertain its
consequences.

An explanation was proposed by Lorentz and FitzGerald, wtroduced the hypoth-
esis of a contraction of all bodies in the direction of thetEarmotion and proportional
to the square of the aberration. This contraction, which wkecall the Lorentzian con-
traction, would explain Michelson’s experiment and all others perfed up to now. The
hypothesis would become insufficient, however, if we weradmit the postulate of rel-
ativity in full generality.

Lorentz then sought to extend his hypothesis and to modifyatder to obtain perfect
agreement with this postulate. This is what he succeededingdn his article entitled
Electromagnetic phenomena in a system moving with any ivelemaller that that of
light (Proceeding®f the Amsterdam Academy, May 27, 1904).

The importance of the question persuaded me to take it uprim the results | ob-
tained agree with those of Mr. Lorentz on all the significaoinps. | was led merely
to modify and extend them only in a few details; further on wié gee the points of
divergence, which are of secondary importance.

*Translated by Scott Walter frolRendiconti del Circolo Matematico di Palern#i, 1906, 129-176.
In J. Renn and M. Schemmel (edsThe Genesis of General Relativity Vol. 3: Theories of Gedidn
in the Twilight of Classical Physics; Part(Boston Studies in the Philosophy of Science 250), 253-271,
Springer, 2007. The original notation is faithfully reprmed, including the use ot/” for both ordinary
and partial differentiation. The translator’s footnotdisare bracketed. For alternative translations of
Poincaré’s memoir see C. W. KilmisteBgecial Theory of RelativityDxford: Pergamon, 1970, 145-185),
and H. M. SchwartzAmerican Journal of Physic39:1287-1294; 40:862—-872, 1282—-1287).
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Lorentz’s idea may be summed up like this: if we are able toresp a translation
upon an entire system without modifying any observable phema, it is because the
equations of an electromagnetic medium are unaltered bgisgransformations, which
we will call Lorentz transformationsTwo systems, one of which is at rest, the other in
translation, become thereby exact images of each other.

Langevin*) sought to modify Lorentz’s idea; for both authors, the nmgvelectron
takes the form of a flattened ellipsoid. For Lorentz, two agkshe ellipsoid remain
constant, while for Langevin, ellipsoid volume remains stant. The two scientists also
showed that these two hypotheses are corroborated by Kaofsnexperiments to the
same extent as the original hypothesis of Abraham (rigltespelectron).

The advantage of Langevin’s theory is that it requires oldgteomagnetic forces, and
bonds; it is, however, incompatible with the postulate dditreity. This is what Lorentz
showed, and this is what | found in turn using a different rodthvhich calls on principles
of group theory.

We must return therefore to Lorentz’s theory, but if we wamdb this and avoid
intolerable contradictions, we must posit the existen@esygecial force that explains both
the contraction, and the constancy of two of the axes. | sitogtetermine this force, and
found thatit may be assimilated to a constant external pressure on éfierchable and
compressible electron, whose work is proportional to tlee®bn’s change in volume.

If the inertia of matter is exclusively of electromagnetrggm, as generally admitted
in the wake of Kaufmann’s experiment, and all forces are @ftebmagnetic origin (apart
from this constant pressure that | just mentioned), theypaigt of relativity may be es-
tablished with perfect rigor. This is what | show by a very glencalculation based on the
principle of least action.

But that is not all. In the article cited above, Lorentz judgenecessary to extend
his hypothesis in such a way that the postulate remains wabdse there are forces of
non-electromagnetic origin. According to Lorentz, alldes are affected by the Lorentz
transformation (and consequently by a translation) in Hreesway as electromagnetic
forces.

It was important to examine this hypothesis closely, andairtigular to ascertain the
modifications we would have to apply to the laws of gravitatio

We find first of all that it requires us to assume that graotai propagation is not
instantaneous, but occurs with the speed of light. One ntighk that this is reason
enough to reject the hypothesis, since Laplace demondtitaae this cannot be the case.
In reality, however, the effect of this propagation is comgeed in large part by a dif-
ferent cause, in such a way that no contradiction arisesdstthe proposed law and
astronomical observations.

Is it possible to find a law satisfying Lorentz’s conditiomdareducing to Newton’s
law whenever the speeds of celestial bodies are small ertougjlow us to neglect their
squares (as well as the product of acceleration and distaniterespect to the square of
the speed of light?

To this question we must respond in the affirmative, as wese# later.

Modified in this way, is the law compatible with astronomiolkervations?

It seems so on first sight, but the question will be settleg after an extended dis-
cussion.

Suppose, then, that this discussion is settled in favor efriw hypothesis, what

*Langevin was anticipated by Mr. Bucherer of Bonn, who earidvanced the same idea. (See:
BuchererMathematische Einfihrung in die Elektronentheofiagust, 1904. Teubner, Leipzig).



should we conclude? If propagation of attraction occuré wie speed of light, it could
not be a fortuitous accident. Rather, it must be becauseifusiction of the ether, and
then we would have to try to penetrate the nature of this fancand to relate it to other
fluid functions.

We cannot be content with a simple juxtaposition of formutzst agree with each
other by good fortune alone; these formulas must, in a maohgpeaking, interpene-
trate. The mind will be satisfied only when it believes it hasgeived the reason for this
agreement, and the belief is strong enough to entertaifitiséon that it could have been
predicted.

But the question may be viewed from a different perspectdetter shown via an
analogy. Let us imagine a pre-Copernican astronomer whectefon Ptolemy’s system;
he will notice that for all the planets, one of two circles +ogple or deferent —is traversed
in the same time. This fact cannot be due to chance, and coaisty between all the
planets there is a mysterious link we can only guess at.

Copernicus, however, destroys this apparent link by a @miphnge in the coordinate
axes that were considered fixed. Each planet now describiegla sircle, and orbital
periods become independent (until Kepler reestablisteebrtk that was believed to have
been destroyed).

It is possible that something analogous is taking place.héreve were to admit
the postulate of relativity, we would find the same numbehmlaw of gravitation and
the laws of electromagnetism—the speed of light—and we avdinld it again in all
other forces of any origin whatsoever. This state of affaiesy be explained in one of
two ways: either everything in the universe would be of etsotagnetic origin, or this
aspect—shared, as it were, by all physical phenomena—vb@ddnere epiphenomenon,
something due to our methods of measurement. How do we gd aieasuring? The
first response will be: we transport objects considered tionagiable solids, one on top
of the other. But that is no longer true in the current thebrya admit the Lorentzian
contraction. In this theory, two lengths are equal, by d&énj if they are traversed by
light in equal times.

Perhaps if we were to abandon this definition Lorentz’s theauld be as fully over-
thrown as was Ptolemy’s system by Copernicus’s intervant®hould that happen some
day, it would not prove that Lorentz’s efforts were in vaiechuse regardless of what one
may think, Ptolemy was useful to Copernicus.

I, too, have not hesitated to publish these few partial tesalen if at this very mo-
ment the discovery of magneto-cathode rays seems to thréeentire theory.

8 1. — Lorentz Transformation.

Lorentz adopted a certain system of units in order to do awiety 4w factors in for-
mulas. | will do the same, and in addition, select units ofjterand time in such a way
that the speed of light equals 1. Under these conditionsdandting electric displace-
ment /', g, h, magnetic intensity, g, y, vector potentialF, G, H, scalar potentiai/,
charge density, electron velocity, n, ¢, and current:, v, w, the fundamental formulas



become:
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An elementary particle of matter of volumakcdydz is acted upon by a mechanical
force, the components of which are derived from the formula:

X =pf + phy —B). (2)

These equations admit a remarkable transformation disedusy Lorentz, which owes
its interest to the fact that it explains why no experimemnt cdorm us of the absolute
motion of the universe. Let us put:

x' =kl(x + et), 1= kit + &x), y =1Ly, ' =4z, (3)
wherel ande are two arbitrary constants, such that

1
k =

NS
Now if we put:
RN
- dx/z dt/z ’
we will have:
O =002,

Let a sphere be carried along with the electron in uniformdiation, and let the equation
of this mobile sphere be:

(x =&+ (y—n0)’ + (z—¢0)* =72,

and the volume of the sphere Be 3 [

The transformation will change the sphere into an ellipstiid equation of which is
easy to find. We thus deduce easily from (3):

/ /

k / ’ _ k / / _ y _ z /
x—z(x—st), Z_Z(t —e&x'), y—?, Z—K. (3)
The equation of the ellipsoid then becomes:
k2(x' —et' — &' + eEX)? + (v — nkt' + nkex)? + (2 — Ctkt' + Ckex')? = %72,
This ellipsoid is in uniform motion; for’ = 0, it reduces to

K2x"?(1 + £e)* + (V) + nkex)? + (2 + thex')? = L3,

[The original reads: £7r2".




and has a volume:
4 , 0

37 k(¥ Eo)
If we want electron charge to be unaltered by the transfaomaand if we designate
the new charge densipy/, we will find:

.k
p = 6—3(/9 + €pé). (4)
What will be the new velocity componerg§ n” and¢’? We should have:
_dx’ _dx+et) E+e

= T d(t +ex) 1+eE
= ' dy g = g
dt'~ kd(t +ex) k(1 + &)’ k(1 + &&)’
whence:
]/ k /.7 1 ! s/ 1 /
P& = 5—3(/05 + &p), P = 5P, p¢ = g—3p§- 4)

Here is where | must point out for the first time a differenceéhwiorentz. In my
notation, Lorentz put (l.c., page 813, formulas 7 and 8):

/ 1 / / !/
p=rph  E=KGE+e.  a=kn =kt
In this way we recover the formulas:

/ s/ k /.7 1 / s/ 1
p$=£—3(pé+8p), P = 5P, p§=£—3/0Z;

although the value o#’ differs.
Itis important to notice that the formulas (4) add) Gatisfy the condition of continuity

dp/ dp/%'/
— = 0.
dt’ + dx’

To see this, lek be an undetermined coefficient afidthe Jacobian of

t+ Ap, X + Apé, Y+ Apn, z+ Ap¢ (5)
with respect ta, x, y andz. It follows that:
D = Dy + D1k + DiA* + D3A* + DyA*,

, dp dpé
th Dy =1, D, = - i Y
Wi Ho TR

Let M = £*p';1?) then the 4 functions
t/ + )\'/ /’ x/ _|_ )\’/p/g/’ y/ _|_ )\'/p/n/’ Z/ _|_ )\’/p/g-/ (5/)

are related to the functions (5) by the same linear relatimssas the old variables to the
new ones. Therefore, if we denof¥ the Jacobian of the function§’] with respect to
the new variables, it follows that:

D'=D, D =D)+ DN+ + D\

[21The original reads: X' = ¢2p"".



and thereby?!

d/ d//
D,=Do=1, D,=0"*D, =0=d—’;+ ;j. Q.E.D.

Under Lorentz’s hypothesis, this condition would not be siatep’ has a different
value.

We will define the new vector and scalar potentials in such y agmto satisfy the
conditions

D/w! — _p/’ I:IIF/ — _plg/. (6)
From this we deduce:
1

/_k /_E /_l r_
V=W teF). F'=2(Ftey). G'=5G. H = H (7)

These formulas differ noticeably from those of Lorentzyaitgh the divergence stems

ultimately from the definitions employed.
New electric and magnetic fields are now chosen in order tsfgdhe equations

CdFdy , _dH  dG’

= , 7 8
f=—ar o YT @ ®

It is easy to see that:

d _k(d _d\ d _k
dar \ar %) av T

and we deduce thereby:

1 k

f/zg_zfv g/zg_z(g+8y)a h/:_(h_ng)’ (9)
1 k

o = 7Y B = g_z('B —¢eh), y' =y +e2).

These formulas are identical to those of Lorentz.

Our transformation does not alter (1). In fact, the conditd continuity, as well as
(6) and (8) were already featured in (1) (neglecting the psjn

Combining (6) with the condition of continuity, we obtain:

dy’ dF’
= 0. 1
dt’ + Z dx’ 0 (10)
It remains for us to establish:
df’ ., dy’ dp do' dg’ di df’ ,
P = Aalyiabret dv =P
dt dy" dz dt dz'  dy dx

and it is easy to see that these are necessary conseque@gg®fand (10).
We must now compare forces before and after the transfoomati

BThe original reads: D} = ¢=2D,".



Let X, Y, Z be the force prior to the transformation, akd, Y’, Z’ the force after
the transformation, both forces being per unit volume. breoifor X’ to satisfy the same
equations as before the transformation, we must have:

X' =p [+ 0oy =B,
Y =p'g" +p'({e = &y,
Z/ — p/h/ + pl(glﬂ/ _ 7,’/a/)’

or, replacing all quantities by their values (4’)(and (9), and in light of (2):

k
X' = X +ey XE),

Y = —Y, (11)

A ! V4

=52

Instead of representing the components of force per unitwelby X, Y, Z;, we

now let these terms represent the force per unit electrorgehand we letx ], Y/, Z]
represent the latter force after transformation. It fokawat:

Xi=f+ny—=88, X =f+ny-0p, X=pXi, X =pX,

and we obtain the equations:

k p

X = E—SE(XI +ey Xi).
1 p

Y] = E;Yl’ (11
1 p

Lorentz found (page 813, equation (10) with different niotat

X, =X —Ce(g +'h),
e, e,
=gt s (11")
0?2 2e
7= —7' —&N.
1 k 1 + k %‘

Before going any further, it is important to locate the seunt this significant diver-
gence. It obviously springs from the fact that the formulaséf, n” and ¢’ are not the
same, while the formulas for the electric and magnetic fiatgéthe same.

If electron inertia is exclusively of electromagnetic anigand if electrons are subject
only to forces of electromagnetic origin, then the condisiof equilibrium require that:

X=Y=Z2=0

inside the electrons.
According to (11), these relationships are equivalent to

X' =Y =2Z=0.
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The electron’s equilibrium conditions are therefore ueedtd by the transformation.
Unfortunately, such a simple hypothesis is inadmissibfefatt, if we assumé =
n = ¢ = 0, the conditionX = Y = Z = 0 leads necessarilytg' = g = h =

d . - :
0, and consequently, tg —f = 0, i.e., p = 0. Similar results obtain for the most

general case. We must thexn admit that in addition to electgoretic forces there are
either non-electromagnetic forces or bonds. Thereforeneeel to identify the conditions
that these forces or these bonds must satisfy for electraifil@gum to be undisturbed by
the transformation. This will be the object of an upcomingties.

8 9. — Hypotheses Concerning Gravitation.

In this way Lorentz’s theory would fully explain the impoisgity of detecting abso-
lute motion, if all forces were of electromagnetic origin.

But there exist other forces to which an electromagnetigiortannot be attributed,
such as gravitation, for example. It may in fact happen, tivatsystems of bodies pro-
duce equivalent electromagnetic fields, i.e., exert theesaation on electrified bodies
and on currents, and at the same time, these two systems @xerdothe same gravita-
tional action on Newtonian masses. The gravitational fieltherefore distinct from the
electromagnetic field. Lorentz was obliged thereby to eXtes hypothesis with the as-
sumption thaforces of any origin whatsoever, and gravitation in partaryare affected
by a translation(or, if one prefers, by the Lorentz transformatiam}he same manner as
electromagnetic forces

Itis now appropriate to enter into the details of this hysik, and to examine it more
closely. If we want the Newtonian force to be affected by tloedntz transformation in
this fashion, we can no longer suppose that it depends ontlgeorelative position of the
attracting and attracted bodies at the instant consid@iteelforce should also depend on
the velocities of the two bodies. And that is not all: it wik Imatural to suppose that the
force acting on the attracted body at the instatpends on the position and velocity of
this body at this same instantbut it will also depend on the position and velocity of the
attractingbody, not at the instant but atan earlier instantas if gravitation had taken a
certain time to propagate.

Let us now consider the position of the attracted body atrib&ntz,, and letx,, y,
zo be its coordinates, arfd n, ¢ its velocity components at this instant; let us considey als
the attracting body at the corresponding instant ¢, and let its coordinates bg + x,

Yo + ¥, zo + z, and its velocity components l§e, n;, {; at this instant.

First we should have a relationship

90([’ X, Vs Z, ‘i:’ 1, g'v Elaﬁla§1)=0 (1)

in order to define the time. This relationship will define the law of propagation of
gravitational action (I do not constrain myself by any metma propagation velocity
equal in all directions).

Now let X, Y7, Z; be the three components of the action exerted on the atiracte
body at the instarg,:[*! we want to express, Y1, Z, as functions of

t, x, ¥, z, & 1, ¢, &1, 11, & (2)

What conditions must be satisfied?

[“IThe original reads: “a l'instant’.



1° The condition (1) should not be altered by transformatidrte® Lorentz group.

2° The componentd, Y7, Z; should be affected by transformations of the Lorentz
group in the same manner as the electromagnetic forcesndgstyby the same letters,
i.e., in accordance withl (") of section 1.

3° When the two bodies are at rest, the ordinary law of attractil be recovered.

It is important to note that in the latter case, the relatm$l) vanishes, because if
the two bodies are at rest the timplays no role.

Posed in this fashion the problem is obviously indeternaéinglfe will therefore seek
to satisfy to the utmost other, complementary conditions.

4° Since astronomical observations do not seem to show a $em&biation from
Newton’s law, we will choose the solution that differs thadewith this law for small
velocities of the two bodies.

5° We will make an effort to arrange matters in such a way thatalways negative.
Although we can imagine that the effect of gravitation regsiia certain time in order to
propagate, it would be difficult to understand how this dfterild depend on the position
not yet attainedy the attracting body.

There is one case where the indeterminacy of the problemsivasiit is the one where
the two bodies are in mutusdlativerest, i.e., where

é:%-lv n=n, g':g'lv

this is then the case we will examine first, by supposing thedé velocities are constant,
such that the two bodies are engaged in a common uniforniineeti translation.

We may suppose that the-axis is parallel to this translation, such that= { = 0,
and we will lete = —£.

If we apply the Lorentz transformation under these condgj@fter the transformation
the two bodies will be at rest, and it follows that:

E/Zn,=§,=0.

The componentd, Y7, Z; should then agree with Newton’s law and we will have,
apart from a constant factor:

X y z
/ / /2 /2 /2 /2
_l’/3 , Yl = __l’/3 s Zl = __l’/3 s r-=x°+ y + z'“. (3)

X =-
But according to section 1 we have:
X' =k(x+et), y =y, =z, t'=k(@+ex),
% =k(l + &) =k(1—¢?) = % > XiE =X,
X{ = kD0 +e )X =KX (1 =) = X,
Y, = k%n — kY,

Z,=kZ;.
We have in addition:

x + et =x —E&t, r?=k*(x — &) +y* + 22



and

—k(x —&t) -y -z
X :T’ Y ZW, Z =ma (4)
which may be written:
X_dV Y_dV Z_dV_ V—l @)
Yax T Ty TN dz T T ke

It seems at first that the indeterminacy remains, since weemacdhypotheses con-
cerning the value of, i.e., the transmission speed; and that besides,a function ofz.
It is easy to see, however, that the terms appearing in omrdias,x — &7, y, z, do not
depend on.

We see that if the two bodies translate together, the fortegaon the attracted body
is perpendicular to an ellipsoid, at the center of which iesattracting body.

To advance further, we need to look for tingariants of the Lorentz group

We know that the substitutions of this group (assunting 1) are linear substitutions
that leave unaltered the quadratic form

x2+y2+22—12.

Let us also put:

dx 8y oz

‘i:_ E’ n= gﬂ g'_ E’
. 81X _ 51)/ _ 812_
&1 = S0 M T s §1—31[,

we see that the Lorentz transformation will make 6y, 6z, 6z, andé; x, 8;y, 6,1z, 61t
undergo the same linear substitutionscay, z, ¢.

Let us regard
X, y, z, t\/—_l,
§x, 8y, 8z, 8t/—1,
§1x, 81y, 81z, Sitv/—1,

as the coordinates of 3 poin®, P’, P” in space of 4 dimensions. We see that the
Lorentz transformation is merely a rotation in this spaceudlthe origin, assumed fixed.
Consequently, we will have no distinct invariants apamfithe 6 distances between the 3
points P, P’, P”, considered separately and with the origin, or, if one psef@part from
the two expressions

x2 4+ % 422 12, xX6x + ydy + z6z — tét,

or the 4 expressions of like form deduced from an arbitrarynpation of the 3 points
P, P, P

But what we seek are invariants that are functions of the ti@bkes (2). Therefore,
among the combinations of our 6 invariants we must find thegedding only on these
10 variables, i.e., those that are Oth degree homogenedlisespect both téx, 6y, 6z,
ot,and tod, x, 8, y, 61z, §:¢. We will then be left with 4 distinct invariants:

ZXZ—IZ, t—> x¢ ’ 1= x& ’ -2 86 .
VIZXE ieye Jo-ze)-x8)

10
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Next let us see how the force components are transformedgea the equations
(11) of section 1, that refer not to the fordg, Y;, Z; considered at present, but to the
force per unit volumeX, Y, Z.

We designate moreover

T =) X&

we will see that (11) can be writteld & 1):

(6)

X' =k(X +eT), T =k(T+eX),
Y =7, 7' =2Z;

insuchawaythak’, Y, Z, T undergo the same transformationay, z, . Consquently,
the group invariants will be

ZXZ—TZ, ZXx—Tt, ZXSx—T(St, ZXSIX—TSIL

However, itis notX, Y, Z that we need, buk;, Y;, Z,, with
T] - ZX]S

X1 N
X Y zZ T p
Therefore, the Lorentz transformation will act in the sanamner onX,, Y1, Z,, T,
asonX,Y, Z, T, except that these expressions will be multiplied morebyer

We see that
Z, T 1

0 1 ot

o k(1 +Ee) &t

Likewise, the Lorentz transformation will act in the sameywa &, 1, ¢, 1 as ondx,
3y, 6z, 6t, except that these expressions will be multiplied morebyehesamefactor:

ot 1

st k(1 + Ee)

Next we considelX, Y, Z, T'+/—1 as the coordinates of a fourth poi@t the invari-
ants will then be functions of the mutual distances of the pwimts

o, p, P, P, Q

and among these functions we must retain only those thattardegyree homogeneous
with respect, on one hand, to

X, Y, Z, T, éx, 6y, 6z, 6t

(variables that can be replaced further By, Y1, Z;, Ty, &, n, ¢, 1), and on the other
hand, with respect
SIX, 51y, 512, 511‘

(variables that can be replaced furtherépyn,, ¢q, 1).

[51The original readsd; x, 8y, 1z, 1.”
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In this way we find, beyond the four invariants (5), four distinew invariants:

ZXIZ—TIZ ZX]X—TIZ ZXIEI _Tl ZXIS_TI
mLe s VISR sy fi-vg TEE

The latter invariant is always null according to the defomtof 77.

These terms being settled, what conditions must be sattsfied

1° The first term of (1), defining the velocity of propagationsha be a function of
the 4 invariants (5).

A wealth of hypotheses can obviously be entertained, of vhie will examine only
two:

A) We can have

(7)

sz—tzzrz—tzzo,

from whence = =+r, and, since has to be negative,= —r. This means that the veloc-
ity of propagation is equal to that of light. It seems at firsdttthis hypothesis ought to be
rejected outright. Laplace showed in effect that the prafiag is either instantaneous or
much faster than that of light. However, Laplace examinediypothesis of finite prop-
agation velocityceteris non mutatishere, on the contrary, this hypothesis is conjoined
with many others, and it may be that between them a more opky$sct compensation
takes place. The application of the Lorentz transformalias already provided us with
numerous examples of this.

B) We can have

t— x&

0, I=Zx§‘1.
1= &

The propagation velocity is therefore much faster thandh&ght, but in certain cases
could be positive, which, as we mentioned, seems hardlyssibhel®! We will therefore
stick with hypothesigA).

2° The four invariants (7) ought to be functions of the invarsa({®).

3° When the two bodies are at absolute ré&t, Y7, Z; ought to have the values given
by Newton'’s law, and when they are at relative rest, the \sadjien by (4).

For the case of absolute rest, the first two invariants (7hotgreduce to

ZXZ, lex,

1 1

4 r
in addition, according to hypothesis (A), ti&and3' invariants in (5) become:

R b R oY
Vi-¥Ee  fiova

or, by Newton’s law, to

’

that is, for absolute rest,
—r, —r.

[61The original reads?pourrait étre négatif.”

12



We may therefore admifpr examplethat the first two invariants in (7) reducéo

(1->8)"  JI-X&

(r + xe)t o+ LxE

although other combinations are possible.

A choice must be made among these combinations, and furtiieriwe need &'
equation in order to defin&,, Y7, Z;. In making such a choice, we should try to come as
close as possible to Newton’s law. Let us see what happens wheeglect the squares
of the velocities:, n, etc. (still lettingr = —r). The 4 invariants (5) then become:

0, —r—Zxé, —r—ZxEl, 1

and the 4 invariants (7) become:

x5 Y X +En. Y XiE 6. o

Before we can make a comparison with Newton’s law, anotlarsformation is re-
quired. In the case under consideration:+ x, yo + », zo + z, represent the coordinates
of the attracting body at the instagt+ 7, andr = /> _ x2. With Newton’s law we have
to consider the coordinates of the attracting begy- x1, yo + y1, zo + z; at the instant

to, and the distancg = /> _ x2.

We may neglect the square of the timeequired for propagation, and proceed, con-
sequently, as if the motion were uniform; we then have:

x=x1+&t y=yi+mt, z=z1+t, r(r—r) = nglt;
or, sincet = —r,
x=x1=&r, y=y1—mr, z=z1—=r, r=rn —Zxél;
such that our 4 invariants (5) become:
0, -—n +Zx(§1 —£&), —-r, 1
and our 4 invariants (7) become:
DXL Y X+ E-&)nl ) X -8, o

In the second of these expressions | wigtenstead of-, because is multiplied byé —£;,
and because | neglect the squaré .of
For these 4 invariants (7), Newton’s law would yield

1 Y xiE—6) Sxi(E &) 0
2 ’ 3 ’ .

4°
l"l rq }’1 }’1

Therefore, if we designate tt#“ and 3" of the invariants (5) ast and B, and the
first 3 invariants of (7) ad3/, N, P, we will satisfy Newton’s law to first-order terms in
the square of velocity by setting:

=—, N=_Z2 p= . (8)

["IThe original has (4) instead of (7).
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This solution is not unique. L&t be the4" invariant in (5);C — 1 is of the order of
the square of, and it is the same witt4 — B)>.

The solution (8) appears at first to be the simplest, nevietbeit may not be adopted.
In fact, sinceM, N, P are functions ofYy, Y;, Z;, andT; = >_ X,§, the values ofY},
Y1, Z; can be drawn from these three equations (8), but in certaascthese values
would become imaginary.

To avoid this difficulty we will proceed in a different mannéet us put:

1 1

ko = , k=
vi-28 Y-8
which is justified by analogy with the notation
PR
-ye

featured in the Lorentz substitution.
In this case, and in light of the conditiesrr = ¢, the invariants (5) become:

0. A= —ko(r+ Y xE). B=—ki(r+ Y xt). C=koki(1-Y &&).
Moreover, we notice that the following systems of quanditie
X, y, z, —r =1,
koX1, koY1, koZi, koTi,
ko&,  kon. ko, ko,
ki€, ki, kidi, ky

undergo thesamelinear substitutions when the transformations of the Ltrgnoup are
applied to them. We are led thereby to put:

Xl—xk—0+§,3+§1

k
Y1—y +nB + ny
0

k k‘}/’

Zl—Z—+§,3+§1

9)

k
T1=—V—+,3+—V
ko

It is clear that ifa, B, y are invariants, Xy, Y;, Z;, T; will satisfy the fundamental
condition, i.e., the Lorentz transformations will makerthendergo an appropriate linear
substitution.

However, for equations (9) to be compatible we must have

Xlé — Tl - O,
which becomes, replacingj;, T;, Z;, T; with their values in (9) and multiplying b

—Aoa—pB—Cy =0. (20)
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What we would like is that the values df;, Y;, Z; remain in line with Newton’s law
when we neglect (as above) the squares of velodjtiesc. with respect to the square of
the velocity of light, and the products of acceleration aistiashce.

We could select
Ao

:O’ = —_——.
B 14 c

To the adopted order of approximation, we obtain
ko=ki=1,C=1,A=—r+Y x(—§). B=—r., x=x+&l =x —&r.
The 1%t equation in (9) then becomes
X1 =a(x — A&)).

But if the square of is neglected A&, can be replaced byr, &, or by —r&;, which
yields:
X1 =alx +&r) = ax;.

Newton’s law would yield

1

Consequently, we must select a value for the invadewhich reduces te-— in the
}’
1

1
adopted order of approximation, thatilgg. Equations (9) will become:

X £ A
' ko B3 ‘k B3C’
y kl A
Y, = A N
' T kB’ ”‘k BiC’
. P (11)
7, = —
" koB3 élk B3C’
TIZ— 4 —& A .
koB® ko B3C

We notice first that the corrected attraction is composedvof ¢omponents: one
parallel to the vector joining the positions of the two baglithe other parallel to the
velocity of the attracting body.

Remember that when we speak of the position or velocity oatlracting body, this
refers to its position or velocity at the instant the grawitaal wave takes off; for the
attracted body, on the contrary, this refers to the posiiomelocity at the instant the
gravitational wave arrives, assuming that this wave prapeEgwith the velocity of light.

| believe it would be premature to seek to push the discussidinese formulas fur-
ther; | will therefore confine myself to a few remarks.

1
1° The solutions (11) are not unique; we may, in fact, replaedhk global factorB—3
by

%—F(C—l)fl(A, B, C)+ (A— B)*f, (A, B, C),
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where f; and f, are arbitrary functions off, B, C. Alternatively, we may forgo setting
B to zero, but add any complementary term&{g, y that satisfy condition (10) and are
of second order with respect to théor «, and of first order fof andy .

2° The first equation in (11) may be written:

k
6= i[5 (1= ) a1 (- + o) an
and the quantity in brackets itself may be written:

(x +r&) +nE1y —xm) + 61z — x81), (12)

such that the total force may be separated into three comp®erresponding to the
three parentheses of expression (12); the first componerggsely analogous to the
mechanical force due to the electric field, the two otherdiéorhechanical force due to

1
the magnetic field; to extend the analogy | may, in light of fingt remark, replaceB—3

: C . . :
in (11) byﬁ, in such a way thak’, Y;, Z, are linear functions of the attracted body’s

velocity &, n, ¢, sinceC has vanished from the denominator df').
Next we put:

ki(x +r&) =A, ki(y +rn) =, ki(z+r) =v, (13)
kimz—=0y)=A, ki(Gix=&2)=p, kiEy—xm) ="

and sinceC has vanished from the denominator 1), it will follow that:

Ao =
M= T
A =&V
e a4
v & —n)
L= gy

and we will have moreover:

BX=)")7=) "\ (15)

A . L .
Now A, u, v, or —, i, L, is an electric field of sorts, whil&’, «’, v/, or rather
B3' B3’ B3
)\/ Iu/ v ) o
—, —, — is a magnetic field of sorts.
B3 B3 3

3° The postulate of relativity would compel us to adopt solaiibl), or solution (14),
or any solution at all among those derived on the basis of teerémark. However, the
first question to ask is whether or not these solutions arepativie with astronomical
observations. The deviation from Newton’s law is of the oraig?, i.e., 10000 times
smaller than if it were of the order &f i.e., if the propagation were to take place with the
velocity of light, ceteris non mutatisconsequently, it is legitimate to hope that it will not
be too large. To settle this question, however, would reqair extended discussion.

Paris, July, 1905.

H. Poincaré
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