ANALYSE MATHÉMATIQUE. — Sur les séries de M. Lindstedt. Note de M. H. Poincaré.

« Il est une équation qu'on rencontre souvent en Mécanique céleste et qui a déjà fait l'objet de bien des recherches : c'est la suivante

(1)
$$\frac{d^2\rho}{dx^2} + n^2\rho = \mu\varphi(\rho, x);$$

n est un nombre incommensurable, μ un paramètre très petit. Quant à $\varphi(\rho,x)$, c'est une somme de termes de la forme suivante

$$\varphi(\rho, x) = \sum A \rho^m \cos(\lambda x + \alpha).$$

m est un entier, A, λ et α sont des constantes quelconques. Nous pourrons toujours poser

 $\psi(\rho,x) = \sum A \frac{\rho^{m+1}}{m+1} \cos(\lambda x + \alpha),$

ďoù

$$\varphi = \frac{d\psi}{d\varphi}$$
.

- » M. Lindstedt a proposé, pour l'intégration de cette équation, des séries qui ne sont pas convergentes au sens rigoureux du mot, mais qui peuvent rendre de grands services dans la pratique, parce que les termes vont d'abord en décroissant très rapidement et qu'en prenant un petit nombre de ces termes on ne commet qu'une erreur assez faible, comme dans la série de Stirling.
- » Je me propose de présenter la méthode de Lindstedt à un point de vue nouveau, en la rattachant aux principes des *Vorlesungen über Dynamik* de Jacobi.
 - » Nous pouvons remplacer l'équation (1) par les suivantes;

$$\frac{d\sigma}{dt} = \sigma, \qquad \frac{d\sigma}{dt} = -n^2 \rho + \mu \cdot \frac{d\psi}{d\rho}, \qquad \frac{dx}{dt} = 1.$$

» En posant

$$\hat{\mathbf{H}} = \frac{\sigma^2}{2} + n^2 \frac{\rho^2}{2} - \mu \psi + p,$$

il vient

$$\frac{d\rho}{dt} = \frac{dH}{d\sigma}, \quad \frac{d\sigma}{dt} = -\frac{dH}{d\rho}, \quad \frac{dx}{dt} = \frac{dH}{d\rho},$$

auxquelles on peut joindre (puisque p est une variable auxiliaire complètement arbitraire)

 $\frac{dp}{dt} = -\frac{d\Pi}{dx}$.

» Changeons de variables en posant

 $\rho = \sqrt{\frac{2q}{n}} \sin y, \quad \sigma = \sqrt{2nq} \cos y,$

il viendra

$$\begin{split} \mathbf{H} &= p + n^2 q - \nu \psi(q, y, x), \\ \frac{dp}{dt} &= -\frac{d\mathbf{H}}{dx}, \quad \frac{dq}{dt} = -\frac{d\mathbf{H}}{dy}, \quad \frac{dx}{dt} = \frac{d\mathbf{H}}{dp}, \quad \frac{dy}{dt} = \frac{d\mathbf{H}}{dq}. \end{split}$$

» Les équations différentielles se présentant sous la forme canonique, on voit qu'il suffit pour les intégrer de connaître l'intégrale complète de l'équation aux dérivées partielles

$$H = C$$

où l'on regarde p et q comme les dérivées d'une même fonction z et où C est une constante arbitraire. Cette équation s'écrit donc

$$\frac{dz}{dx} + n^2 \frac{dz}{dy} - \mu \psi \left(\frac{dz}{dy}, y, x \right) = C.$$

» Nous allons chercher à développer la fonction inconnue z suivant les puissances de μ , en écrivant

$$z = z_0 + \mu z_1 + \mu^2 z_2 + \dots,$$

$$p = p_0 + \mu p_1 + \mu^2 p_2 + \dots,$$

$$q = q_0 + \mu q_1 + \mu^2 q_2 + \dots,$$

$$q_i = \frac{dz_i}{dy}, \quad p_i = \frac{dz_i}{dx}.$$

» Si dans 4 nous remplaçons q par ce développement, nous trouverons

$$\psi(q, y, x) = \psi_0 + \mu \psi_1 + \mu^2 \psi_2 + \dots;$$

 ψ_0 dépendra de q_0 seulement, ψ_1 de q_0 et de q_1 , ψ_2 de q_0 , q_1 et q_2 , ψ_3 de q_0 , q_1 , q_2 et q_3 , De plus, les ψ_i seront de la forme suivante. Si q_0 est supposé donné, ψ_i pourra se développer suivant les puissances croissantes de

 q_1, q_2, \dots, q_i ; le coefficient de chaque terme de ce développement sera luimême une somme de termes de la forme suivante

(2)
$$A\cos(my + \lambda x + \alpha),$$

m étant un entier, A, λ et α des constantes quelconques.

» Cela posé, on aura pour déterminer successivement les fonctions z_p la suite d'équations récurrentes

(3)
$$\begin{cases} p_{0} + n^{2} q_{0} = C, \\ p_{1} + n^{2} q_{1} = \psi_{0}, \\ \dots \\ p_{i} + n^{2} q_{i} = \psi_{i-1} \end{cases}$$

» Nous prendrons pour p_0 et q_0 deux constantes satisfaisant à la première des équations (3) et nous aurons, par conséquent, $z_0 = p_0 x + q_0 y$; la constante q_0 , que nous supposerons différente de 0, sera notre constante d'intégration.

» Quand on connaîtra $z_0, z_1, z_2, \ldots, z_{i-1},$ on connaîtra ψ_{i-1} et l'équation

$$(4) p_i + n^2 q_i = \psi_{i-1}$$

déterminera zi.

» Convenons d'appeler, pour abréger, fonction trigonométrique de x et de y toute somme de termes de la forme (2).

» Je dis que p_i et q_i seront des fonctions trigonométriques de x et de y. Supposons, en effet, que cela soit vrai des dérivées de z_0 , z_1 , z_2 , ..., z_{i-1} ; je dis que cela sera vrai des dérivées de z_i .

» En effet, cela sera vrai d'abord de ψ_{i-1} , de sorte que l'équation (4) s'écrira

$$p_i + n^2 q_i = \Lambda_0 + \Sigma \Lambda \cos(my + \lambda x + \alpha).$$

» Dans le second membre, j'ai mis en évidence le terme tout connu A_0 de la fonction trigonométrique ψ_{i-1} . Nous tirerons de là

$$\begin{aligned} z_i &= \Lambda_0 x + \sum \frac{A \sin(my + \lambda x + z)}{\lambda + mn^2}, \\ q_i &= \sum \frac{A m \cos(my + \lambda x + z)}{\lambda + mn^2}. \end{aligned}$$

» On voit que q_i , et par conséquent q, est une fonction trigonométrique de x et de γ .

» Nous possédons donc z sous la forme d'une fonction trigonométrique de x et de y, dépendant en outre de deux constantes arbitraires C et g_0 . L'intégrale générale de l'équation (1) est alors

$$q = \frac{dz}{dy}$$
, $\frac{dz}{dq_0} = q'_0$, $\frac{dz}{dG} = x = t$,

 q'_0 étant une nouvelle constante arbitraire.

» Il est aisé d'en déduire les séries de M. Lindstedt sous la forme que le savant astronome leur a donnée.

» On remarquera que cette méthode d'exposition met en évidence la forme purement trigonométrique de la solution, sans qu'on soit obligé de recourir au théorème de Green et à l'artifice que j'ai employé dans le Bulletin astronomique pour démontrer la légitimité de la méthode de M. Lindstedt.

» Ce que je viens de dire s'étend sans peine à des cas beaucoup plus généraux, et, en particulier, au problème des trois corps. Je dois toutefois faire une remarque.

» Pour toute autre loi d'attraction que celle de Newton, l'application de la méthode précédente au problème des trois corps ne présenterait aucune difficulté; avec la loi de Newton, au contraire, elle ne réussirait pas si l'on prenait pour point de départ l'orbite képlérienne; on est donc obligé de prendre comme première approximation l'une des orbites intermédiaires de M. Gyldén. »

CHIMIE MINÉRALE. — Sur les réactions entre l'acide chromique et l'eau oxygénée; par M. Berthelot.

« Les réactions singulières de l'eau oxygénée, si longtemps regardées comme le type mystérieux des actions de présence, peuvent être interprétées aujourd'hui par la Thermochimie, en raison de l'excès d'énergie emmagasinée dans cette combinaison, corps endothermique et dès lors éminemment plastique et apte à former toute une série de composés suroxydés, de moins en moins stables, et qui se détruisent spontanément, après avoir pris naissance dans les premiers moments du contact de l'eau oxygénée avec les acides et les oxydes métalliques : de là ce paradoxe apparent d'un composé oxydant qui détermine des actions réductrices, paradoxe qui s'explique